4 A student was given $200 \mathrm{~cm}^{3}$ of solution \mathbf{X} in which sodium hydroxide, NaOH , and sodium hydrogencarbonate, NaHCO_{3}, had both been dissolved.

The student carried out two different titrations on samples of solution \mathbf{X} using $0.100 \mathrm{moldm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- In the first titration, both NaOH and NaHCO_{3} were neutralised.
- In the second titration, only NaOH was neutralised.

The student's results for the titrations of $25.0 \mathrm{~cm}^{3}$ samples of solution \mathbf{X} are shown.

volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to neutralise both NaOH and NaHCO_{3}	$29.50 \mathrm{~cm}^{3}$
volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to neutralise only NaOH	$18.00 \mathrm{~cm}^{3}$

$$
\begin{aligned}
2 \mathrm{NaOH}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
\end{aligned} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{a}
$$

(a) (i) Calculate the amount, in mol , of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used to neutralise only the NaOH in $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{X}.

```
V(H2SO4) = 18\mp@subsup{\textrm{cm}}{}{3}=0.018\mp@subsup{\textrm{dm}}{}{3}
C(H2SO
```

The volume is given in the table. Remember to convert to dm^{3}. The concentration is given in the question at the top.
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\mathrm{CV}=0.018 \times 0.100=1.8 \times 10^{-3} \mathrm{~mol}$
1.8×10^{-3}
Amount $=$ \qquad
(ii) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of NaOH in solution \mathbf{X}.
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=1.8 \times 10^{-3} \mathrm{~mol}$
$n(\mathrm{NaOH})=2 \times n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.144 \mathrm{~mol}$

Concentration $=$
0.144

You can find the molar ratio between NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the first reaction equation above: it is 2:1 for NaOH : $\mathrm{H}_{2} \mathrm{SO}_{4}$. Hence you have to times the moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that you calculated in (a) (i) by 2. moldm ${ }^{-3}[1]$
(b) (i) Calculate the amount, in mol , of NaHCO_{3} in the $200 \mathrm{~cm}^{3}$ of solution \mathbf{X}.

```
V(H2SO4 used for NaHCO
C(H2SO4})=0.100mol dm-3
n(H2SO4 used for NaHCO3 in 25cm.3) =cV = 0.100 人0.0115=0.00115mol
n(NaHCO
```

since you know the volumes needed to neutralise both NaOH and NaCO_{3}, and we know the volume required to neutralise just NaOH, we can take the away from each

> You can find the molar ratio between NaHCO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the second reaction equation above: it is $2: 1$ for $\mathrm{NaHCO} \mathrm{H}_{3}: \mathrm{H}_{2} \mathrm{SO}_{4}$. Hence you have to times the moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that you calculated in (a) (i) by 2 .

```
n(NaHCO3in 200cm3})=(200/25)\times0.00230=0.0184mo
```

You need to work out how many times 25 goes into 200 to calculate the number of moles in $200 \mathrm{~cm}^{3}$.
(ii) Calculate the mass of NaHCO_{3} in the $200 \mathrm{~cm}^{3}$ of solution \mathbf{X}.

Give your answer to three significant figures.

```
n(NaHCO
Mr(NaHCO3) = 23+1+12+(3\times16) = 849 mol-1.
m(NaHCO3})=n\mp@subsup{M}{r}{}=0.0184\times84=1.55
    1.55
    Mass =
        } [1]
```

