OCR June 2015 F321

4 A student was given 200 cm³ of solution X in which sodium hydroxide, NaOH, and sodium hydrogencarbonate, NaHCO₃, had **both** been dissolved.

The student carried out **two different** titrations on samples of solution **X** using 0.100 mol dm⁻³ sulfuric acid, H_2SO_4 .

- In the first titration, both NaOH and NaHCO₃ were neutralised.
- In the second titration, only NaOH was neutralised.

The student's results for the titrations of 25.0 cm³ samples of solution **X** are shown.

volume of H_2SO_4 needed to neutralise **both** NaOH **and** NaHCO329.50 cm³volume of H_2SO_4 needed to neutralise **only** NaOH18.00 cm³

 $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$

 $2NaHCO_3(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I) + 2CO_2(g)$

(a) (i) Calculate the amount, in mol, of H₂SO₄ used to neutralise only the NaOH in 25.0 cm³ of solution X.

$$V(H_2 SO_4) = 18 \text{ cm}^3 = 0.018 \text{ dm}^3$$

 $C(H_2SO_4) = 0.100 \text{ mol dm}^{-3}$

The volume is given in the table. Remember to convert to dm^3 . The concentration is given in the question at the top.

 $n(H_2SO_4) = cV = 0.018 \times 0.100 = 1.8 \times 10^{-3}$ mol

Amount =

(ii) Calculate the concentration, in mol dm⁻³, of NaOH in solution X.

Concentration = 0.144	moldm ⁻³ [1]
	you calculated in (a) (i) by 2.
$n(NaOH) = 2 \times n(H_2SO_4) = 0.144 \text{ mol}$	H_2SO_4 . Hence you have to times the moles of H_2SO_4 that
$n(H_2SO_4) = 1.8 \times 10^{-3} \text{ mol}$	You can find the molar ratio between NaOH and H₂SO₄ in the first reaction equation above: it is 2:1 for NaOH :

(b) (i) Calculate the amount, in mol, of NaHCO₃ in the 200 cm³ of solution X.

 $V(H_2SO_4 \text{ used for NaHCO}_3 \text{ in } 25\text{cm}^3) = 29.50 - 18.00 = 11.5\text{cm}^3 = 0.0115\text{dm}^3.$ $C(H_2SO_4) = 0.100\text{ mol dm}^3.$

 $n(H_2SO_4 \text{ used for NaHCO}_3 \text{ in } 25 \text{ cm}^3) = cV = 0.100 \times 0.0115 = 0.00115 \text{ mol}$

Since you know the volumes needed to neutralise both NaOH and NaCO3, and we know the volume required to neutralise just NaOH, we can take the away from each

 $n(NaHCO_3 in 25cm^3) = 2 \times n(H_2SO_4 used for NaHCO_3 in 25cm^3) = 0.00230mol$

You can find the molar ratio between NaHCO3 and H2SO4 in the second reaction equation above: it is 2:1 for NaHCO3 : H2SO4. Hence you have to times the moles of H2SO4 that you calculated in (a) (i) by 2.

 $n(NaHCO_3 in 200cm^3) = (200/25) \times 0.00230 = 0.0184 mol$

You need to work out how many times 25 goes into 200 to calculate the number of moles in 200cm³.

(ii) Calculate the mass of NaHCO $_3$ in the 200 cm³ of solution X.

Give your answer to three significant figures.

 $n(NaHCO_3 in 200cm^3) = 0.0184mol$ $M_r(NaHCO_3) = 23 + 1 + 12 + (3 \times 16) = 84g mol^{-1}.$

 $m(NaHCO_3) = n M_r = 0.0184 \times 84 = 1.55g$

1.55 Mass = يا [1]

[Total: 5]